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Abstract —  

In this paper a study on the first order differential algebraic equations of time-invariant and time 

varying cases [6] using the rational approximation method is considered. The obtained discrete 

solutions using the rational approximation method are compared with the exact solutions of the first 

order differential algebraic equations of time-invariant and time varying cases and pade approximation 

method. Tables and graphs are presented to show the efficiency of this method. This rational 

approximation method can be easily implemented in a digital computer and the solution can be 

obtained for any length of time. 
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INTRODUCTION 

Singular systems are being applied to solve a variety of problems involved in various disciplines of 

science and engineering.  They are applied to analyse neurological events and catastrophic behaviour 

and they also provide a convenient form for the dynamical equations of large-scale interconnected 

systems.  Further, singular systems are found in many areas such as constrained mechanical systems, 

fluid dynamics, chemical reaction kinetics, simulation of electrical networks, electrical circuit theory, 

power systems, aerospace engineering, robotics, aircraft dynamics, neural networks, neural delay 

systems, network analysis, time series analysis, system modelling, social systems, economic systems, 

biological systems etc.[5, 7-13 ] 

Wazwaz [14] published a paper on modified Runge-Kutta formula based on a variety of means of 

third order. Murugesan et al. [1 - 4] have analysed different second-order systems and multivariable 

linear systems via RK method based on centroidal mean, and also, they extended RK formulae based 

on variety of means to solve system of IVPs. In this paper, we apply the rational approximation method 

for finding the numerical solution of first order differential algebraic equations of time-invariant and 

time varying cases with more accuracy. 

 

RATIONAL APPROXIMATION METHOD 

The basic principle in designing numerical methods for solving the initial value problem 

y˙ = f (t, y), y(t0) = y0 (1) 

is that the numerical method must fit the Taylor series expansion of the solution in a given point 

with the desired accuracy. For a given initial value problem (1), where y is a vector-valued phase 

variable and t is a scalar (time), the approximate solution obtained in the next time point is denoted as 

yn+1 ≈ y(tn+1). Denote the time step h = tn+1 − tn. Then, consider the Taylor series that approximates the 

solution:  
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Consider a rational approximation of yn+1 as a fraction of two polynomials PL(h) and QM(h): 

 
where L and M are powers of these polynomials. The rational approximation of the solution 

reads: 

 
A number of reliable algorithms for finding the rational approximant (3) exist [19]. Here, we 

use the most straightforward approach. Let M + L = p, where p is a certain natural number. 

Assuming that (2) and (3) must give the same result up to the error term O(hp+1), it follows that 

 
which results in a system of equations: 

 
One can notice that this system is complete only if L + M = p, which is exactly the case of 

the Padé rational approximation. Similarly, the Padé approximant corresponds to the rational 

approximation of the highest possible order of accuracy. Usually, the notation RL/M or [L/M] is 

used to denote the powers of polynomials in the Padé approximant with the power of the 

numerator L and the power of the denominator M. Otherwise, if L + M − p = r, then r > 0, the 

last r equations from (5) should be omitted, and the r coefficients in P and Q remain free. This option 

can be used to obtain rational approximants with some desired properties, but their order of accuracy 

is higher than that with the Padé approximant. 

 

FIRST ORDER DIFFERENTIAL ALGEBRAIC EQUATIONS  

In general a first order differential algebraic equations of time-invariant case is represented in the 

following form 

     tButAxtxK                                                           

with initial condition    00 xx  .    

where K  is an nn  singular matrix, A  and B  are nn  and pn  constant matrices respectively.

 tx  is an n-state vector and  tu is the p-input control vector. 
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A first order differential algebraic equations of time-varying case is represented in the following 

form 

         tutBtxtAtxtK )(                           

with initial condition    00 xx  . 

where  tx and  tu are defined as above and  tK  is an nn  singular matrix,  tA  and  tB  are nn  

and pn  matrices respectively. The elements (not necessarily all the elements) of the matrices 

   tAtK ,  and  tB are time dependent. 

 

NUMERICAL EXAMPLES 
In this section, the exact solutions and approximated solutions obtained by Rational approximation 

method and Pade approximation method. To show the efficiency of the Rational approximation 

method, we have considered the following problem taken from [6], with step size 1.0t  along with 

the exact solutions.  

The discrete solutions obtained by the two methods, Rational approximation method and the Pade 

approximation method; the absolute errors between them are tabulated and are presented in Table 1 - 

2. To distinguish the effect of the errors in accordance with the exact solutions, graphical 

representations are given for selected values of “t“ and are presented in Fig. 1 to Fig. 5 for the following 

problem, using three dimensional effects.   

 

Example 4.1 

The first order differential algebraic equations of time-invariant case with three variables of the form 

(1) is given by  [6] 
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and the exact solution is  
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Example 4.2 

The first order differential algebraic equations of time-varying case with two variables of the form 

(2) is given by [6] 
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using Rational approximation method and Pade approximation method to solve the above problems, 

the absolute errors are evaluated and are presented in Table 1 and Table 2 with various time step size. 

Error graphs are presented Fig. 1 to Fig. 6 to highlight the efficiency of the method.  
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TABLE I 

t 

Example 4.1 

Pade approximation 

Error 

Rational approximation 

Error 

1x  2x  3x  1x  2x  3x  

0.1 1E-09 4E-09 3E-09 1E-11 4E-11 3E-11 

0.2 2E-09 6E-09 5E-09 2E-11 6E-11 5E-11 

0.3 3E-09 8E-09 7E-09 3E-11 8E-11 7E-11 

0.4 4E-09 1E-08 9E-09 4E-11 1E-10 9E-11 

0.5 5E-09 1.2E-08 1.1E-08 5E-11 1.2E-10 1.1E-10 

0.6 6E-09 1.4E-08 1.3E-08 6E-11 1.4E-10 1.3E-10 

0.7 7E-09 1.6E-08 1.5E-08 7E-11 1.6E-10 1.5E-10 

0.8 8E-09 1.8E-08 1.7E-08 8E-11 1.8E-10 1.7E-10 

0.9 9E-09 2E-08 1.9E-08 9E-11 2E-10 1.9E-10 

1.0 1E-08 2.2E-08 2.1E-08 1E-10 2.2E-10 2.1E-10 

 

TABLE III 

t 

Example 4.2 

Pade approximation Error Rational approximation Error 

1x  2x  1x  2x  

0.1 2E-09 7E-09 2E-11 7E-11 

0.2 5E-09 9E-09 5E-11 9E-11 

0.3 8E-09 1.1E-08 8E-11 1.1E-10 

0.4 1.1E-08 1.3E-08 1.1E-10 1.3E-10 

0.5 1.4E-08 1.5E-08 1.4E-10 1.5E-10 

0.6 1.7E-08 1.7E-08 1.7E-10 1.7E-10 

0.7 2E-08 1.9E-08 2E-10 1.9E-10 

0.8 2.3E-08 2.1E-08 2.3E-10 2.1E-10 

0.9 2.6E-08 2.3E-08 2.6E-10 2.3E-10 

1.0 2.9E-08 2.5E-08 2.9E-10 2.5E-10 

 
Fig. 1 Error estimation of Example 4.1 at 1x                                                                                            

 
Fig. 2 Error estimation of Example 4.1 at 2x  



43                                                        JNAO Vol. 14, Issue. 2, No. 2: 2023 

 

      
Fig. 3 Error estimation of Example 4.1 at 3x  

           
Fig. 4 Error estimation of Example 4.2 at 1x         

                                    
Fig. 6 Error estimation of Example 4.2 at 2x  

 

CONCLUSIONS 

A simple and easy method is introduced in this paper to obtain discrete solutions of first order 

differential algebraic equations of time-invariant and time varying cases using Rational approximation 

method. The efficiency and the accuracy of the Rational approximation method have been illustrated 

by suitable examples. The solutions obtained are compared well with the exact solutions and Pade 

approximation method. It has been observed that the solutions by our method show good agreement 

with the exact solutions. The present method is very convenient as it requires only simple computing 

systems, less computing time and less memory. The Rational approximation method is very simple 

and direct which provides the solutions for any length of time. 
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